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Abstract Escherichia coli is one of the most widely used
hosts for the production of recombinant proteins. Howev-
er, there are often problems in recovering substantial
yields of correctly folded proteins. One approach to solve
these problems is to have recombinant proteins secreted
into the periplasmic space or culture medium. The
secretory production of recombinant proteins has several
advantages, such as simplicity of purification, avoidance
of protease attack and N-terminal Met extension, and a
better chance of correct protein folding. In addition to the
well-established Sec system, the twin-arginine transloca-
tion (TAT) system has recently been employed for the
efficient secretion of folded proteins. Various strategies for
the extracellular production of recombinant proteins have
also been developed. For the secretory production of
complex proteins, periplasmic chaperones and protease
can be manipulated to improve the yields of secreted
proteins. This review discusses recent advances in secre-
tory and extracellular production of recombinant proteins
using E. coli.

Introduction

Escherichia coli has been the “workhorse” for the
production of recombinant proteins as it is the best-
characterized host with many available expression systems

(Lee 1996; Makrides 1996). However, E. coli cannot
produce some proteins containing complex disulfide
bonds, or mammalian proteins that require post-transla-
tional modification for activity. Nevertheless, many
recombinant proteins have been successfully produced
using E. coli. Overexpressed proteins are often produced
in the form of inclusion bodies, from which biologically
active proteins can only be recovered by complicated and
costly denaturation and refolding processes. Furthermore,
the final yields of these soluble refolded proteins are
usually very low, due mainly to protein aggregation
resulting from interactions between the hydrophobic
regions of the proteins.

A variety of techniques have been developed to solve
these problems, including the use of different promoters to
regulate the level of expression, the use of different host
strains, co-expression of chaperones, reduction of culture
temperature, and secretion of proteins into the periplasm or
culture medium. In this review, we discuss strategies for
secretory and extracellular production of recombinant
proteins using E. coli.

Secretory production of recombinant proteins
using E. coli

Secretory production of recombinant proteins provides
several advantages compared to cytosolic production. For
example, the N-terminal amino acid residue of the secreted
product can be identical to the natural gene product after
cleavage of the signal sequence by a specific signal
peptidase. Also, there appears to be much less protease
activity in the periplasmic space than in the cytoplasm. In
addition, recombinant protein purification is simpler due
to fewer contaminating proteins in the periplasm. Another
advantage is that correct formation of disulfide bonds can
be facilitated because the periplasmic space provides a
more oxidative environment than the cytoplasm (Makrides
1996). Furthermore, it has recently been shown that
secreted proteins can be applied in in-vivo activity assays
as secretion gives the expressed protein (enzyme) greater

J. H. Choi . S. Y. Lee
Metabolic and Biomolecular Engineering National Research
Laboratory, Department of Chemical and Biomolecular
Engineering and BioProcess Engineering Research Center,
373-1 Guseong-dong,
Korea Advanced Institute of Science and Technology, 305-701
Yuseong-gu, Daejeon, Korea

S. Y. Lee (*)
Department of Biosystems and Bioinformatics Research
Center, Korea Advanced Institute of Science and Technology,
373-1 Guseong-dong,
305-701 Yuseong-gu, Daejeon, Korea
e-mail: leesy@kaist.ac.kr
Tel.: +42-869-3930
Fax: +42-869-8800



access to the substrate. Secreted proteins can also be used
to screen protein libraries (Chen et al. 2001; Sroga and
Dordick 2002).

In gram-negative bacteria, at least three different types
of protein secretion systems have been described—type I,
type II, and type III (Pugsley 1993), with type II being the
most widely used. The type II system involves a two-step
process in which a premature protein containing a signal
sequence is exported to the periplasmic space using the
Sec pathway and processed into a mature protein.
Although heterologous proteins are often exported to the
periplasm by the common Sec system, extracellular
secretion of target proteins depends on the characteristics
of signal sequences and proteins.

Generally, proteins found in the outer membrane or
periplasmic space are synthesized in the cytoplasm as
premature proteins. These premature proteins contain a
short (15–30) specific amino acid sequence (signal
sequence) that allows proteins to be exported outside the
cytoplasm. A number of signal sequences have been used
for efficient secretory production of recombinant proteins
in E. coli, including PelB, OmpA, PhoA, endoxylanase,
and StII. Although sequence diversity exists among these
signal sequences, some common structural features have
been identified. Table 1 shows the representative signal
sequences that have been used for the secretory production
of recombinant proteins in E. coli. Typical signal
sequences are composed of a hydrophobic H-domain of
about 10–20 amino acids that can be preceded by a short,
positively charged N-domain of about two to ten amino
acids (Fig. 1, Table 1). In general, signal sequences are
rich in hydrophobic amino acids, such as alanine, valine,
and leucine, a feature essential for secretion of the proteins
into the periplasm of E. coli (Pugsley 1993). During
transport of proteins out of the cytoplasm, the signal
sequence is cleaved by signal peptidase to yield a mature
protein product. The cleavage site (the C-domain) is
usually less hydrophobic, contains a signal recognized by
the signal peptidase, and conforms to the −3, 1 rule
(Pugsley 1993)—that is, the residue at position −1 must
have a small neutral side-chain, as is the case for alanine,

glycine, and serine, and this also holds true for the residue
at position −3. As can be seen from Table 1, alanine is
most frequently found at the −1 and −3 positions, forming
the so-called Ala-X-Ala box, which is recognized and
cleaved by signal peptidase I. The secondary structure at
the cleavage junction of preproteins also plays an
important role in determining the cleavage site and protein
processing (Pratap and Dikshit 1998). Thus, the selection
of an optimal signal sequence is important for efficient
secretory production of recombinant proteins. As can be
seen from Table 2, the efficiency of protein secretion
varies depending on the host strain, signal sequence, and
the type of protein to be secreted. To date, there is no
general rule in selecting a proper signal sequence for a
given recombinant protein to guarantee its successful
secretion. Several signal peptides, such as those listed in
Table 1, must be examined in a trial-and-error type
approach.

One of the advantages of secretory protein production is
that the authentic N-terminal amino acid sequence without
the Met extension can be obtained after cleavage by the
signal peptidase. However, this can be achieved only when
the gene of interest is correctly fused to the cleavage site.
Choi et al. (2000) reported on the use of a new signal
sequence cloned from the Bacillus sp. endoxylanase gene
(Jeong et al. 1998) for the secretory production of
recombinant proteins. Within the signal peptidase cleavage
site (A-S-A) of the endoxylanase signal sequence, there is
aPstI site that can be used for directly cloning the gene
encoding the mature protein of interest. Upon cleavage by
the signal peptidase, the mature protein can be produced
without the need to change any amino acid sequence.
Therefore, the endoxylanase signal sequence allows
convenient cloning of genes encoding recombinant
proteins for secretory production without changing either
the sequence itself or the sequence of the mature protein.
This is an important feature of the endoxylanase signal
peptide as other signal sequences often cannot be used
without changing the mature protein sequence. Using the
endoxylanase signal sequence and the inducible trc
promoter, Bacillus sp. endoxylanase and E. coli alkaline

Table 1 Representative signal
sequences used for the secretory
production of recombinant pro-
teins in Escherichia coli. The
signal sequence is composed of
N-, H- and C-domains. The N-
domains of signal sequences are
shown in bold while the C-
domains are underlined

Signal sequences Amino acid sequences

PelB (pectate lyase B) from Erwinia carotovora MKYLLPTAAAGLLLLAAQPAMA
OmpA (outer-membrane protein A) MKKTAIAIAVALAGFATVAQA
StII (heat-stable enterotoxin 2) MKKNIAFLLASMFVFSIATNAYA
Endoxylanase from Bacillus sp. MFKFKKKFLVGLTAAFMSISMFSATASA
PhoA (alkaline phosphatase) MKQSTIALALLPLLFTPVTKA
OmpF (outer-membrane protein F) MMKRNILAVIVPALLVAGTANA
PhoE (outer-membrane pore protein E) MKKSTLALVVMGIVASASVQA
MalE (maltose-binding protein) MKIKTGARILALSALTTMMFSASALA
OmpC (outer-membrane protein C) MKVKVLSLLVPALLVAGAANA
Lpp (murein lipoprotein) MKATKLVLGAVILGSTLLAG
LamB (λ receptor protein) MMITLRKLPLAVAVAAGVMSAQAMA
OmpT (protease VII) MRAKLLGIVLTTPIAISSFA
LTB (heat-labile enterotoxin subunit B) MNKVKCYVLFTALLSSLYAHG
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phosphatase could be secreted into the E. coli periplasm.
Furthermore, human leptin and granulocyte-colony stimu-
lating factor (G-CSF) were also efficiently secreted into
the E. coli periplasm using this sequence (Jeong and Lee
2000, 2001; Yim et al. 2001).

More recently, a novel twin-arginine translocation
(TAT) system was discovered. The TAT system is Sec
independent and is capable of secreting folded proteins by
employing a particular signal peptide containing a twin-
arginine sequence. Green fluorescent protein (GFP) fused
to the twin-arginine signal peptide of trimethylamine-N-
oxide (TMAO) reductase (TorA), and alkaline phospha-
tase (Tap) from Thermus thermophilus,which also uses the
TAT system, were successfully secreted into the periplasm
of E. coli (Angelini et al. 2001; Barrett et al. 2003; Santini
et al. 2001; Thomas et al. 2001). Since the TAT system
allows secretion of proteins already folded in the E. coli
cytosol, it may have advantages over the Sec system,
particularly for those proteins that may be folded before
they can reach the Sec machinery or that contain complex
disulfide bonds.

Despite many successful examples, such as those
described above, secretory production of heterologous

proteins inE. coli remains problematic. Obstacles include:
(1) incomplete processing of signal sequences, (2) variable
secretion efficiency depending on the characteristics of the
proteins, (3) low or undetectable amounts of recombinant
protein secretion, (4) formation of inclusion bodies in the
cytosol and periplasm when using strong promoters, and
(5) incorrect formation of disulfide bonds (Chung et al.
1998; Jeong and Lee 2000; Lucic et al. 1998; Pritchard et
al. 1997; Wong et al. 2003). The first three problems have
been solved using a trial-and-error type approach; different
promoters, signal sequences, and host strains were
examined under various culture conditions (e.g. temper-
ature). The third problem might be due to periplasmic
proteolysis rather than poor secretion machinery. In this
case, a host strain deficient in periplasmic proteases can be
used (see below). The fourth and fifth problems have been
solved by manipulating periplasmic chaperones, as shown
below. In addition, the use of the TAT system may be a
good alternative to solve some of these problems.

Fig. 1A–C Strategies for the secretory production of recombinant
proteins in Escherichia coli. The Sec system, the twin-arginine
translocation (TAT) system, and the strategies for enhancing
secretory protein production using periplasmic chaperones and
protease-negative mutants are shown.A The co-expression of
periplasmic chaperones, such as disulfide-bond formation (Dsb)
family proteins, SurA, FkpA, and Skp, can improve the efficiencies
of secretory production and protein folding (Arie et al. 2001;

Bothmann and Pluckthun 1998, 2000; Jeong and Lee 2000;
Kurokawa et al. 2001; Lazar and Kolter 1996; Qiu et al. 1998;
Wulfing and Rappouoli 1997; Zavialov et al. 2001).B Protease-
negative mutant strains can improve secretory production of
recombinant proteins by reducing proteolysis (Park et al. 1999;
Wulfing and Rappuoli 1997).C A novel TAT system can directly
secrete the folded proteins (Angelini et al. 2001; Barrett et al. 2003;
Santini et al. 2001; Thomas et al. 2001)
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Enhancement of secretion efficiency by manipulating
periplasmic chaperones

Many proteins contain disulfide bonds that need to be
correctly formed to be functional. Some proteins contain-
ing disulfide bonds can be produced in active forms in the
periplasm or extracellular medium using the secretion
system. However, production of large and complex
recombinant proteins in the E. coli periplasm can be
limited by low secretion levels and folding problems,
leading to periplasmic inclusion bodies. Many periplasmic
chaperones have been characterized, and subsequently
used for the efficient secretion of recombinant proteins.
These proteins assist in correct folding of secreted proteins
and prevent the formation of periplasmic inclusion bodies.
Strategies for enhancing secretion efficiency of recombi-
nant proteins in E. coli are presented in Fig. 1.

Large and complex proteins from mammalian cells
frequently contain disulfide bonds which contribute to
their stability and, in many cases, are essential for their
catalytic activities. However, the E. coli cytosol is a rather
reduced environment, and thus disulfide bonds are not
normally formed. The enzymes that catalyze disulfide
bond formation play key roles in folding many secreted
proteins. For example, the Dsb (disulfide-bond formation)
family of proteins catalyzes both the formation of new
disulfide bonds and the rearrangement of existing ones.
Dsb proteins contain one or more highly conserved
thioredoxin-like motifs (C-X-X-C) which are important
for disulfide oxidoreductase activity. DsbA and DsbB are
oxidoreductases that allow the formation of disulfide
bonds (Fig. 1). Subsequent rearrangement of the newly
formed disulfide bonds is sometimes necessary since they
can be formed among incorrectly paired cysteines,
trapping substrate proteins in a misfolded conformation.
Normally, misfolded proteins in the periplasm do not
readily accumulate, being rapidly degraded by DegP
protease. Disulfide-bond rearrangement is catalyzed by
two periplasmic disulfide bond isomerases, DsbC and
DsbD (Fig. 1). Recent studies revealed that the overex-
pression of Dsb proteins increased secretion efficiency,
folding, and the solubility of recombinant proteins in the
periplasmic space (Jeong and Lee 2000; Kurokawa et al.
2001; Qiu et al. 1998; Wulfing and Rappouoli 1997).

SurA, FkpA, and Skp are another set of folding catalysts
and chaperones in the periplasmic space (Bothmann and
Pluckthun 2000; Missiakas et al. 1996). SurA, which was
identified in E. coli during starvation survival, shares
sequence similarity with parvulin, a cytoplasmic peptidyl
prolyl isomerase (PPI) in E. coli. Lazar and Kolter (1996)
demonstrated that SurA assists in periplasmic folding of
three outer-membrane proteins (OmpA, OmpF, and
LamB) and of some other secreted proteins. SurA
promotes folding of several otherwise unstable proteins
(e.g. Protein A-β-lactamase hybrid protein) and proteins
prone to aggregation. FkpA, which is a heat-shock
periplasmic peptidylprolyl cis/trans isomerase, was
shown to suppress the formation of modified maltose-
binding protein (MalE31) inclusion bodies and to enhanceM
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periplasmic expression and folding efficiency of functional
antibody fragments in E. coli (Arie et al. 2001; Bothmann
and Pluckthun 2000). Skp is also a periplasmic chaperone
and it appears to improve phage-antibody display and
periplasmic expression (Bothmann and Pluckthun 1998).

Sometimes, efficient protein secretion is hindered due to
the degradation of target proteins by cell-envelope
proteases, such as DegP, OmpT, protease III, and Tsp.
Strategies to minimize proteolysis include reducing culti-
vation temperatures and using protease-negative mutant
strains (Park et al. 1999; Wulfing and Rappuoli 1997).

Zavialov et al. (2001) demonstrated another novel
approach using the chaperone/usher pathway for the
secretion of human interleukin-1β and F1 antigen (Caf1)
fusion protein into the periplasmic space. In this system,
the Caf1M chaperone assisted periplasmic folding and
enhanced chimeric protein solubilization.

Extracellular production of recombinant proteins

Extracellular production of recombinant proteins has
several advantages over secretion into the periplasm
(Shokri et al. 2003). Extracellular production does not
require outer-membrane disruption to recover target
proteins, and, therefore, it avoids intracellular proteolysis
by periplasmic proteases and allows continuous produc-
tion of recombinant proteins. Based on these advantages,
various strategies have been developed in E. coli for the
extracellular production of recombinant proteins (Fig. 2,
Table 3).

A number of methods have been applied to promote
extracellular secretion of recombinant proteins from E.
coli. These include the use of biochemicals, physical
methods (osmotic shock, freezing and thawing), lysozyme
treatment, and chloroform shock. However, these methods
can be applied only after harvesting cells. E. coli normally
does not secrete proteins extracellularly except for a few
classes of proteins such as toxins and hemolysin. Secreted
proteins can leak from the periplasmic space into the

Fig. 2A–D Strategies for the extracellular production of recom-
binant proteins by E. coli. A Recombinant proteins can be excreted
into the culture medium by treating cells with various agents or by
using L-form cells (Jang et al. 1999; Kaderbhai et al. 1997; Kujau et
al. 1998; Yang et al. 1998).B Recombinant protein fused to outer-
membrane protein F (OmpF) of E. coli can be excreted into the
culture medium (Jeong and Lee 2002; Nagahari et al. 1985). C
Proteins secreted into the E. coli periplasm can also be released into
the culture medium by co-expression of kil, out genes, the gene

encoding the third topological domain of the transmembrane protein
TolA (TolAIII), or the bacteriocin-release protein gene (Fu et al.
2003; Kleist et al. 2003; Lin et al. 2001b; Miksch et al. 1997; 2002;
Robbens et al. 1995; van der Wal et al. 1995, 1998; Wan and
Baneyx 1998; Zhou et al. 1999).D The target protein fused to the C-
terminal hemolysin secretion signal can be directly excreted into the
culture medium through the hemolysin transport system (Fernandez
et al. 2000; Li et al. 2002)
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culture medium possibly due to an increased permeability
of the cell membrane during a lengthy incubation period.
Small proteins secreted into the periplasm are frequently
released into the culture medium (Tong et al. 2000). In
general, movement of recombinant proteins from the
periplasm to the culture medium is the result of
compromising the integrity of the outer membrane.
However, care must be exercised during such recombinant
protein production so as not to compromise cellular
integrity, which often causes cell death. Interestingly,
glycine or Triton X-100 supplemented to the medium
retarded formation of inclusion bodies in the periplasm
and increased the extracellular production efficiency of
recombinant proteins (Jang et al. 1999; Kaderbhai et al.
1997; Yang et al. 1998). Glycine has been found to induce
morphological changes, such as an enlarged spheroidal
morphology in E. coli, as it is incorporated into peptido-
glycan. Glycine supplementation may slightly disrupt
peptidoglycan cross-linkages and cell membrane integrity.
Yang et al. (1998) reported that adding 2% (w/v) glycine
dramatically increased extracellular production of sFV/
TNF-α and β-glucosidase.

Another method of extracellular protein production
involves fusing the product to a carrier protein that is
normally secreted into the medium (e.g. hemolysin), or to
a protein expressed on the outer membrane (e.g. OmpF).
For example, human β-endorphin could be secreted into
the culture medium when fused to OmpF (Jeong and Lee
2002; Nagahari et al. 1985). Recently, a method of
releasing active scFv antibody and human interleukin-6
into the culture medium using the hemolysin secretion
pathway was reported (Fernandez et al. 2000; Li et al.
2002). The hemolysin transport system (Hly) is a type-I
secretory apparatus that forms a protein channel between
the inner and outer membranes o fE. coli. Hemolysin toxin
(HlyA) is secreted by direct passage of the HlyA
polypeptide from the cytoplasm to the extracellular
medium using the hemolysin transport system (Fig. 2).
For extracellular production using the hemolysin secretion
pathway, the target protein is fused to the C-terminal
hemolysin secretion signal. The Hly system appears to be
an attractive candidate for the extracellular production of
recombinant proteins.

Proteins secreted into the E. coli periplasm can also be
released into the culture medium by co-expression of kil
(Kleist et al. 2003; Miksch et al. 1997; 2002; Robbens et
al. 1995) or the gene coding for the third topological
domain of the transmembrane protein TolA (TolAIII)
(Wan and Baneyx 1998). Zhou et al. (1999) reported
extracellular production of the Erwinia chrysanthemien-
doglucanase by employing the out genes from E.
chrysanthemi EC16, which are responsible for the efficient
extracellular secretion of pectic enzymes. Co-expression
of the out genes increased production of active endoglu-
canase and released enzymes equivalent to over half of the
total activity into the extracellular medium.

Another approach to the extracellular production of
target proteins uses L-form cells, wall-less, or wall-
deficient cells (Kujau et al. 1998; Rippmann et al.

1998). Recently, Kujau et al. (1998) demonstrated that
L-form E. coli cells were capable of secreting into the
culture medium a recombinant antibody fragment (single-
chain phosphorylcholine-binding scFv from human
McPC603) fused to the OmpA signal sequence under
the control of the lac promoter. A correctly folded and
dimerized mini-antibody was secreted directly, and
remained stable in the culture medium.

Bacteriocin release protein (BRP) can also be used in
the extracellular production of recombinant proteins in E.
coli. BRP is a 28-amino-acid lipoprotein that activates
detergent-resistant phospholipase A, resulting in the
formation of permeable zones in the cell envelope through
which proteins can pass into the culture medium (Fu et al.
2003; Lin et al. 2001b; van der Wal et al. 1995). However,
co-expression of the BRP gene can damage the cell
envelope and cause release of other cellular proteins.
Recently, van der Wal et al. (1998) reported that a
modified BRP gene (Lpp-BRP) could be used for the
extracellular production of K88 fimbrial molecular
chaperone FaeE without growth inhibition, lysis, or
contaminating proteins.

Conclusions

Recent advances in our understanding of the protein
secretory machinery and mechanism in E. coli have led to
the development of various strategies to enhance secretory
production of recombinant proteins. However, despite the
successful development of various recombinant protein
secretion systems, several problems remain to be solved.
First, many large and complex proteins of eukaryotic
origin are not efficiently secreted. Second, without trial-
and-error, it is somewhat difficult to select a proper host-
vector system and a signal sequence for the secretion of a
desired protein. Third, the high-cell-density culture
techniques for the secretory production of recombinant
proteins are less well developed than those for cytosolic
production. The first and second problems will be solved
as our understanding of protein secretion pathways,
folding mechanisms, periplasmic chaperone function,
and signal sequences advances further. An obvious
alternative solution to the first problem is simply not to
adhere to the E. coli expression system, and instead use
other organisms, including mammalian cells, as is
currently practiced for a number of mammalian proteins.
The third problem is that less research has been devoted to
secretory production than to cytosolic expression, and
therefore, can be solved by more research into the former.
E. coli has been successfully used for both industrial- and
laboratory-scale cytosolic production of recombinant
proteins. Similar success with secretory and extracellular
production of recombinant proteins using E. coli will
likely follow.
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